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Abstract

Modern warfare tactics demand timely, high quality intelligence information. Strike aircraft are
in special need of accurate, real-time targeting information due to their proximity to hostile tar-
gets. The Defense Advanced Research Project Agency’s Tactical Targeting Network Technology
(TTNT) initiative focuses on responding to this need by improving distributed command and con-
trol operations through a low-latency, high bandwidth, and dynamically reconfigurable network
infrastructure. In this research, we develop an algorithm that supports the entry of a TTNT
participant into a pre-existing, ad hoc, and wireless net-centric environment.

Analysis of the shortcomings of similar current technologies, specifically Jini networking tech-
nology and Bluetooth, established a need for a security-focused approach to ad hoc networking.
Likewise, popular secure Public Key Infrastructure (PKI) implementations have also proven in-
sufficient due to their reliance on non-mobile systems. The algorithm presented in this project
applies a novel key management procedure to provide information assurance in the TTNT realm.
The implementation of the key management scheme included the creation of a simulation to test
different network joining scenarios.

This simulation provided both a successful implementation of the secure joining algorithm, as
well as the means to collect empirical runtime measurements. Incorporation of a trust management
scheme is also discussed. Our approach addresses the complex scenarios in which a previously
authenticated network node could verify a joining user’s credibility.

This research provides a necessary first step in the development of ad hoc networks suitable
for employment in network centric warfare operations. We demonstrate the capability for wireless
nodes to rapidly and securely join existing TTNT networks. Additionally, this research provides a
key management approach that contributes to the design of secure, ad hoc networks.
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Chapter 1

Introduction

The emerging Tactical Targeting Network Technology (TTNT) [25] is a realization of the

Network-Centric Warfare (NCW) concept that seeks to provide the backbone for dissemi-

nating tactical data within a networked battle environment [1]. The NCW concept defines

a networking system composed of a series of grids that, when combined, allow a heightened

degree of battlespace awareness. A NCW system attains this increased awareness by dis-

tributing the command and control entities across the network. The focus of TTNT is to

achieve the NCW warfare mission through the establishment of a distributed, dynamically

reconfigurable network. Such a network is expected to aid every warfighting entity, espe-

cially tactical aircraft, due to the high-speed nature of tactical aviation environments. With

TTNT, aircraft promulgate targeting information through ad hoc connections to improve

reaction time to pop-up targets.

The TTNT network needs to be distributed, net-centric, and secure. Security in such a

networking environment is complex due to the rapid mobility, inherent uncertainty, and the

power constraints of the networking entities. A reliance on trusted third parties, as most

authentication schemes currently use, does not incorporate well into the TTNT environment.

The standard version of the Kerberos authentication protocol [24] relies on a trusted third

party for every authentication. Such an approach in the TTNT domain would inhibit the

desired flexibility and distributed nature due to the constant references to this static third

party.
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Current security practices that include frequent trusted third party referral and the ability

to perform high computation public-key actions do not function properly in the ad hoc, wire-

less domain. Most mobile entities are power-constrained, and consequently have relatively

low computational power available. Also, unlike conventionally wired networks, physical se-

curity of the transport media is not as easily controlled within the wireless network domain.

Since wireless transmission occurs through the open air, wireless networks receive greater

exposure to eavesdropping, denial of service attacks, and other malignant network behavior

[18]. Establishing secure communications in a dynamic environment is further challenged

when the communication entities do not hold any a priori information about each other.

1.1 Motivation

As of this writing, the United States has incorporated network centric technology in recent

operations in Afghanistan. Currently, a successful NCW implementation example involves

the RQ01 Predator Unmanned Aerial Vehicle (UAV). A Predator is equipped with the ca-

pability to send live video feed to an AC-130H Spectre Gunship. This pairing was effectively

used in a recent attack near the Zawar Kili cave complex in Eastern Afghanistan and demon-

strates the utility of net-centric technology [17]. The Predator was able to obtain real-time

video surveillance to assess the target, enabling the AC-130 to engage the target upon ar-

rival. Previous AC-130 tactics required that the aircraft first over fly the target to obtain

the necessary targeting data. This not only alerts the target to the eminent attack, but also

extends the exposure of the aircraft to counterattack. Although the AC-130 now possesses

a Predator link, other aircraft have yet to receive this modification, resulting in ground

operators still talking the pilots onto their targets [17].

Although UAVs provide real-time intelligence, the heart of network centric operations

lies in giving targeting information directly to the pilot, soldier, or sailor. However, other

platforms may benefit from direct tactical sensory data, such as a targeting solution from

an attack aircraft’s radar. If numerous platforms have the potential to share targeting in-

formation, a network technology is needed to provide, manage, and maintain a high level of
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connectivity. Specific network connections, such as those in the AC-130/Predator combina-

tion, increase the battlespace awareness only for the specialized platform. What is needed

is a network standard like TTNT to share data among all platforms in the battlespace.

1.2 Organization of Report

The remainder of this report is organized as follows: Section 2 discusses the framework

technologies and concepts that are applied in the research. In Section 3 we present the joining

algorithm and the assumptions concerning the initial conditions. Section 4 describes the

prototype simulations and proof of concept. Section 5 discusses the actual implementation

and final design considerations. Section 6 describes the experimental procedure and the

application to TTNT scenarios. In Section 7 we draw our analysis from the experiments,

and in Section 8 we present our conclusions.

In Appendix A we include a discussion of our progress throughout the course of the

project compared to our proposed timeline. Appendices B and C are the Java source files

AuthenticationClient.java and AuthenticationService.java respectfully, that outline

our implementation discussed in Section 5. Lastly, Appendix D contains instructions for

installation and use of the simulation software.
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Chapter 2

Background

In this section we present the fundamental principles and technologies underlying our work.

Section 2.1 describes the original motivation for Tactical Targeting Network Technology

(TTNT) and defines the scope of this project. In Section 2.2, we discuss key Network Centric

Warfare concepts and apply them to TTNT. In Section 2.3 we provide a summary of the

underlying public key cryptography and digital certificate technology of an authentication

algorithm. Section 2.4 contains an analysis of mobile, ad hoc networking security and the

inherent security difficulties that typically arise when designing and using such a network.

Finally, in Section 2.5, we present two current ad hoc networking technologies and evaluate

both technologies from the perspective of meeting the needs of the TTNT specifications.

2.1 TTNT Design Goals

One of the main motivating factors for DARPA’s TTNT initiative is the need to respond to

targets of opportunity with greater speed [25]. This technology is meant to allow tactical

aircraft to immediately share fire-control and battle damage assessment data of a pop-up

target, such as an unanticipated surface-to-air missile site. Designers are currently working

to produce a complete product, to include the construction of TTNT hardware. The TTNT

program is concerned with frequency hopping schemes, error correcting protocols, and sup-

porting coexistence with LINK-16 systems. Eventually, TTNT will also incorporate the flow
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of sensitive, tactical fire-control information.

The algorithm developed as a result of this Trident research focuses on a limited subset

of the TTNT problem space. Specifically, the algorithm presents a solution to the problem

of joining a network in an ad hoc, network-centric manner. The actual TTNT will have to

address issues involving situations in the absence of a pre-existing network, or where many

nodes attempt to join at once. The fundamental assumption of our algorithm is that an

entity desires to join an established ad hoc network of more than one node. This assumption

reduces the complexity of the problem to research, develop, and test the algorithm within

the Trident time-line.

2.2 TTNT as a Network-Centric Infrastructure

Two key components of TTNT are computational grids and net-centricity [15]. By way of

comparison, consider an electric power infrastructure that provides clients with instanta-

neous and convenient access, enabling end-users to power a myriad of devices. Likewise, a

computational grid attempts to provide computing resource access to its clients. A compu-

tational grid is a computing infrastructure that provides pervasive and inexpensive access

to networked entities [15]. The grid forces operations away from the individual platform

and toward the networked entities. Critical aspects of net-centricity include the ability of a

networking infrastructure to provide services on-demand, and the ability of the network to

be self-administering. Note that a large collaboration of platforms, like the Internet, is not

inherently net-centric. Such a network merely allows computational entities to physically

connect to each other. In a net-centric system, the network itself is the computational entity.

A net-centric system can be expected to serve the user more efficiently through its ability to

manage its own resources [10].

To establish net-centricity, each NCW grids decomposes into a set of three specialized

grids: the information grid, the sensor grid, and the engagement grid [15]. The information

grid is a networking hardware construct that provides the mechanism for data communica-

tion. It also facilitates an interface for its users to access the information they need. The
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information grid is dynamic, and provides capabilities for properly adapting its resource al-

location as users and servers join and leave the network. The information grid provides an

infrastructure that can administer its own resources, a concept known as self-synchronization

[1].

As depicted in Fig. 2.1, there are three entities that compose the net-centric grid model:

sensors, shooters, and decision makers. The first, and most prominent, are sensor entities.

Sensor entities collect data, and may aid in the distribution of other sensory data. In the

NCW model, a federation of sensors installed in a computation grid is called the sensor

grid. The second type of NCW entity is a shooter, which are tactical platforms with fire-

control capabilities, such as a fighter aircraft. Shooters reside mainly on the engagement

grid, however a tactical platform may also have sensory devices. Thus, a platform may be

a sensor and a shooter, participating in both grids. This is represented in Fig. 2.1 by the

diamond figure, with the circle inside to depict a shooter with a TTNT sensor installed.

Figure 2.1: TTNT Logical Design
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Shooter entities can distribute fire control information, process sensory information, and

engage designated targets. The third entity type in the net-centric grid represent decision

makers. Decision maker entities can process both sensory and fire control information, but

they are the only entities able to interpret the data and choose actions. In a distributed

manner, their decisions disseminate through the net-centric grid to control the sensors and

shooters. Furthermore, due to the adaptive nature of NCW, platforms may have changing

roles acting as a combination of entities to respond to dynamic situations.

2.3 Public Key Cryptography and Digital Certificates

To provide secure message traffic to other entities on the grid, the communication protocol

must employ some form of cryptography. Most modern cryptosystems either use symmetric

or public key algorithms [21]; both are based on a key, or keys, that will handle encryption

and decryption. Both public key and symmetric cryptosystems can provide properties of

authentication, integrity, and non-repudiation in messages. Authentication ensures that

the sender of the message has proven his identity to the receiver, while integrity states

the message being transferred has not been altered enroute. Additionally, cryptography

can provide non-repudiation, which prevents the sender from denying authorship of a sent

message [21].

In symmetric cryptographic algorithms, both the sender and the receiver have identical

keys. Since this key is used for both encryption and decryption, the entire security of

the cryptosystem depends on the secrecy of the key [21]. Although symmetric algorithms

can provide adequate security, distributing and managing keys is cumbersome. Since both

parties require the same key to communicate, and the key must remain secret, the parties

must be cautious when agreeing on their secret key. The safest method is an actual face-to-

face meeting, or a transportation medium involving the highest levels of physical security.

Key exchange is an inherent problem for symmetric key cryptography, because both parties

must pre-arrange a means for distribution. The need for a priori knowledge in symmetric

cryptosytems makes the ability to securely communicate with unknown individuals difficult.
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Public key cryptography solves the failings of symmetric cryptography by using a private

and public key pair. With this asymmetric cryptography approach, the private key cannot

be calculated, within reasonable computational limits, if only the public key is known. The

private key is kept secret and is used for decrypting a message, while the public key can be

published or stored on a server and is needed for encryption. The Diffie-Hellman algorithm

makes it possible to allow secure key distribution over an insecure channel [16]. Using the

Diffie-Hellman key exchange algorithm, two individuals can communicate securely, without

ever meeting or even knowing each other. Through application of the algorithm, two parties

can calculate the same key, independent of each other, which allows the enabling of a link for

secure traffic. Public key cryptography is not desirable for actual communication, but only

for establishing communication by distributing symmetric keys [21]. Public key methods

are used primarily for key distribution because they are more complex and require greater

computational ability. Symmetric algorithms are significantly faster and more efficient for

communication, therefore a public key algorithm will usually transmit a random key, called

a session key, which will be used to communicate via symmetric encryption [21].

The ability to prove an identity is a critical component in Public Key Infrastructure

(PKI), and digital signature protocols help to provide this authentication. In a manner

similar to handwritten signatures, digital signatures provide a proof of authenticity to the

receiver of a message. Based on public key cryptography, digital signatures rely on a public-

private key pair. Further, digital signatures heavily employ the use of one-way hash functions.

The one-way hash function, also known as a secure hash function, takes the message as input

and computes a smaller, unique, fingerprint representation of the message. Any modulation

of the message changes its hash value, and since the hash function is one-way, the message

cannot be feasibly acquired from the hash [6].

After the sender hashes a message, it then will be signed using his private key. This

signature is then sent attached to the message. Upon receipt, the receiver calculates the

hash value of the message and, using the sender’s public key, verifies the message. In order

to achieve a successful verification, the hash value of the message on the receiving end

must match the sender’s original hash value. This confirms that the sender’s private key
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was actually used, and that the message remained unaltered during transfer [6]. Digital

signatures not only provide authentication, but also provide another desirable aspect of

public key infrastructure: non-repudiation [22]. Since a user’s private key is unique, he is

the only person that can sign his messages and thus cannot claim that he did not send the

message.

The last main foundation of public key infrastructures that we address are digital cer-

tificates and the concept of trusted third parties. Digital certificates bind an identity to a

public key pair to reduce the potential for public key impostors [5]. A digital certificate also

contains a list of credentials about its owner, such as name, public key, and digital finger-

print. A trusted third party, or certification authority (CA), issues a certificate to a user,

and then signs the certificate with the CA’s private key. This eliminates some of the trust

problems in the basic public key distribution methods. Since the real advantage of using a

public key system is that two parties can establish secure communication over an insecure

medium, the receiving party needs to have some assurance that the sender’s public key does

in fact belong to the sender. For example, if an individual receives a public key signed by

a trusted CA and can verify the validity of the CA’s signature on the key, then he can also

have some confidence in the sender’s public key.

Public key cryptography, digital signatures, one-way hash functions, and digital certifi-

cates, combined in a systematic manner, compose the foundations of a Public Key Infras-

tructure. A PKI manages CAs, but it also provides extra functionality through the ability

to “issue, revoke, store, retrieve, and trust certificates” [12]. Since the PKI CA is the root

authority for all issued certificates, its integrity and reliability is vital to all the certificates

that it signs. The root CA is supported by the X.509 [12] certificate standard. An X.509

certificate is an identity certificate that contains information about the issuer that binds the

certificate to a specific public key. The X.509 standard grants a PKI its hierarchal authority

and provides it with a directory structure. Most X.509 implementations also prevent the

user from owning multiple certificates. Therefore, each certificate holder is bound to one

specific key that is provided by the CA.
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2.4 Mobile Ad Hoc Network Security

Mobile, ad hoc, networks (MANETs) are inherently unstructured due to their dynamic topol-

ogy [3]. Since entities continuously join and exit the network, the state of the network is

in perpetual flux. This uncertainty, especially in a TTNT environment, dramatically in-

creases the difficulty of securing the network. Security in such a networking environment is

extremely complex due to the rapid mobility, inherent uncertainty, and power constraints

of the ad hoc networking entities [18]. The security issues stem from the difficulty to es-

tablish and maintain a trust relationship in a MANET. Ad hoc connections need to occur

quickly within the architecture; authentication is complex and resource intensive, especially

considering MANETs’ typical unstable topology. Various partial solutions exist in emerging

MANETs, including the absence of security, simple shared-secret authentication, and full

PKIs. Currently, standards such as the IEEE 802.11 standard for wireless Local Area Net-

works implement a symmetric key approach. This approach reduces the management com-

plexity and encourages faster connection establishment. However, symmetric key solutions

do not provide strong security and are easily susceptible to eavesdropping [20]. Conversely,

PKI implementations in MANETs are cumbersome due to the inherent limitations of mobile

computing. Public key algorithms are considerably more resource intensive than symmetric

ones, which is an important consideration in light of the limited capabilities of MANET

nodes. An obvious solution does not exist for supporting key management services like certi-

fication, revocation, and key issuance due to the numerous possibilities for insecurities. The

limited capabilities of MANET nodes, the awkwardness of a PKI implementation, and the

vulnerabilities of a symmetric key protocol result in highly suspect solutions to the issue of

MANET security.

2.5 Bluetooth and Jini

Bluetooth [26] is an emerging wireless technology that applies an ad hoc connection scheme

similar to that needed by TTNT. This technology allows many heterogeneous units to com-
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municate in a localized ad hoc network. Bluetooth technology is ideal for home and small

office networks that contain many computational devices, because it can offer wireless con-

nectivity for each device. The proprietary Bluetooth algorithm for joining a network is based

on a challenge-response authentication scheme [27]. Bluetooth devices use a symmetric key

that is arranged a priori, with authentication being based on the challenger’s ability to

produce this key.

The underlying Bluetooth algorithms fail to support TTNT goals in a manner similar

to the shortcomings of Sun Microsystems’ Jini Technology [23]. Likewise, Jini does not

include an authentication protocol, but instead relies on inherited security policies from

Java. Currently, Sun Microsystems has incorporated enhanced authentication protocols to

include Kerberos [24] network authentication support in Java 2 v1.4 [23]. Although Jini may

be used with Java-based authentication, this implementation still lacks an adaptive approach

to network joining management, as we further discuss in Section 5.2. Similarly, Bluetooth

does not provide support for a grid-like infrastructure, and is not scalable to accommodate

TTNT. Bluetooth’s scalability is proximity based and is designed to only handle users in

small groupings located within meters of each other.

Another shortcoming of Bluetooth is in its method of authentication. Its weakness lies

in its assumption that the symmetric authentication key will remain secret among valid

Bluetooth devices. For example, a Bluetooth device can masquerade as another device using

that device’s symmetric link key, thus destroying the trust relationship that is the basis for

Bluetooth communication. While Bluetooth may be secure enough for small applications in

the home, its ability to provide confidence on any large network with sensitive data is prob-

lematic [27]. Bluetooth’s weak authentication scheme and lack of support for computational

grids prevents its application in TTNT.
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Chapter 3

A Distributed, Ad Hoc Joining

Algorithm

Conventional PKI is cumbersome in dealing with unknown, ad hoc connecting entities be-

cause most protocols involve frequent, trusted, third party access. Due to the nature of the

TTNT environment, users require secure and rapid connections. However, users may not

be close enough, either in a physical or networked sense, to access a trusted third party. In

this chapter, we discuss our algorithm for key creation, management, and exchange that will

provide ad hoc authentication without use of a third-party.

3.1 PKI Assumption

A traditional PKI implementation is not suitable for TTNT because of the complications

with the wireless and mobile aspects. Typical PKIs rely heavily on constant trusted third

party access, contrary to a mobile, ad hoc realm where there is neither the means nor

the computational power to continually maintain a secure connection with such an entity.

However, a PKI can serve as a valuable framework upon which to build due to the intrinsic

structure embedded in TTNT’s native military environment. For example, the PKI must

apply a distributed authentication technique and not require trusted third-party references

at the time a join request occurs, since such a restriction would inhibit our desired ad hoc
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connectivity. We assume that trusted third parties exist in the TTNT network that are both

cryptographically and physically secure. For the application of tactical aircraft, military

air bases and aircraft carriers are prime candidates to act as trusted parties. These secure

servers act as the lowest layer in our certification authorities (CA) infrastructure, to provide

a reliable digital signature framework. While the network users are in its presence before

they engage in ad hoc operations, the CA will perform certificate and key management to

ensure that the current network state and certificates are updated. The PKI framework

facilitates faster authentication methods because communicating entities will most likely be

either local or inter-domain.

3.2 Certification Authorities

A certificate authority is responsible for verifying the identity of entities, issuing public and

private key pairs. When issuing new public keys, a CA appends its digital signature with

the public key to bind the entity’s identity of the key’s owner to the key pair. CAs play an

essential role in a PKI because the CA structure establishes a chain of verification and trust

to each user. Fig. 3.1 depicts an example of our certificate tree. In this example, CA00 is the

root CA. It authorizes its immediate subordinate CAs with its digital signature. The lowest

CAs in this example are CA30, CA31, CA32, and CA33. As shown in this figure, the fourth

layer are the active TTNT participants. In our scenarios, these entities are represented as

tactical aircraft. The ad hoc joining procedure we discuss involves two aircraft from this

level. We refer to the fourth layer participants as Joining Entities (JE), and for explanatory

purposes, we associate a modern tactical aircraft with each JE. We represent both JE40 and

JE41 as US Navy F/A-18 Hornets, JE42 as a US Navy S-3 Viking, JE43 as a US Air Force

A-10 Thunderbolt II, and JE44 as a British Eurofighter.
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Figure 3.1: TTNT Certification Authority Structure

3.3 PKI Domain Sets

A graphical representation of the TTNT domain classification is shown in Fig. 3.2. Although

network entities will form ad hoc connections most often with their local domain members,

TTNT entities will also have membership in larger domain levels. Authentication outside a

local domain is possible with a hierarchical certificate structure. The military environment,

for which TTNT is specifically designed, is well suited for such a PKI.

In the TTNT environment, aircraft communicate most frequently with other aircraft from

their squadron, therefore they all share a local CA. Once the verification process extends

beyond the local reference, both authentication time and computational complexity increase.

The second and third domains in Fig. 3.2 represent broader unit classifications in the TTNT

domain scope. For example, two entities from different local domains would have to use their

shared second domain CA for authentication.

In a possible TTNT implementation, the local domain level might consist of platforms

from the same ship, or aircraft carrier. As show in Fig. 3.2, a sample local domain can

contain tactical fighters that may exhibit different NCW characteristics. A tactical fighter

attempting to join a network that is composed of fighters from his own squadron is considered
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local to the network since they would all share the same immediate CA, in this case the

Figure 3.2: TTNT Domain Classification

aircraft carrier. Classifying TTNT entities as being from the same service would be the next

highest domain. The same-service classification adds complexity to the joining process due

to the increase in the number of certificates used. In a similar manner, the classifications

can be further extracted to include same-country domains, and coalition domains.

3.4 Digital Certificate Specification

In an effort to explore non-standard certifying mechanisms, we generated two approaches for

certificate issuing procedures resulting in certificate chains. The essential difference in these

two approaches lies in the specific data that is received with the certification authority’s

signature.

Our initial approach had the performance advantage of allowing any common certifying

authority’s key held by the decision maker to immediately decrypt the joiner’s key. The key

could be authenticated after determining the common key, rather than having to unravel a

chain of signatures down the tree from a common key. Fig. 3.3 depicts a certificate chain

with four certificates. This approach has the disadvantage of requiring that all authorities in

the entity’s chain of command sign each platform’s key. This centralized coordination is not

acceptable in a distributed environment, as it would require that each level of certification



22

authority be provided a copy of the key to sign. Also, each CA would be tasked with verifying

the identity of every key holder. This is much more effectively done at the level of authority

closest to the entity itself because there are less certificates to validate.

Figure 3.3: The Certificate Chain

The second approach requires that each key be signed only by its immediate certification

authority. For this discussion, let A represent JE40 from Fig. 3.1 and B represent JE41.

The certificate chain that B holds contains a series of public keys, each accompanied by a

data structure containing administrative information about the certification authority, all

encrypted by a superior level CA. When one of B’s public keys is able to decrypt a link in

the chain, the result is the public key needed to decrypt the next link. Using this process,

once B successfully decrypts the message, it obtains A’s public key. The data structure that

is appended to the message contains attributes and credentials about the CA that encrypted

the message. The first entry in the data structure is a character string that will be regularly

changed by the CA. Since the data structure is appended in plain text, the potential exists

for cryptanalysis of the plaintext information that is encrypted directly with a private key.

However, if the first entry of the data structure is dynamic, there will be less discernable

difference between the end of the public key and the start of the plaintext data, making

cryptanalysis more difficult. The portions of the certificate “link” that are encrypted with

the symmetric key and other details of the certificate are shown in 3.4

A modification to the second approach which reduces the threat of a chosen plaintext

attack is to have the previous CA encrypt a symmetric session key with its private key.

This approach also reduces the threat of chosen plain text cryptanalysis because the random

symmetric key is the only information encrypted directly by the issuer’s private key. Like the

dynamic data structure entry, the CA can mandate a symmetric key change to also minimize
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a potential security risk.

Figure 3.4: Detailed Certificate

3.5 Ad Hoc PKI Connection

After certificate initialization, entities are prepared to participate in the TTNT network.

Table 3.1 describes the authentication algorithm in detail. The algorithm follows a Diffie-

Hellman Key Exchange approach [10], [21]. As shown in Table 3.1, each Diffie-Hellman Key

is created at the beginning of the protocol and successful completion of the Diffie-Hellman

exchange results in each participant generating the same symmetric key, which they will use

to encrypt their following communication.

Although both parties now have the same symmetric key after participating in a Diffie

Hellman Exchange, there is no assurance to the server (or the client) of the identity of the

communicating party. This is due to the potential for a man-in-the-middle attack in the

Diffie-Hellman Key Exchange protocol [21]. Schneier suggests additional steps to refute this

vulnerability through the addition of a digital signature verification [21]. In our algorithm,

we include an additional procedure to prevent this threat. Since every TTNT node has

a certificate chain that includes information about its public key, and the public keys of

its verifying CAs, there is enough information available in the certificate chain to provide

authentication.

Authentication is possible following the assumption that every TTNT participant shares

at least the root CA in common with any other participant. This assumption is reasonable

in a military environment where there is a chain of command to maintain accountability.
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We stress however, that verification involves the root CA only in a minority of the cases.

Therefore, when the server receives the client’s certificate chain, it can trace the chain back

to a common CA. Once the server has located the common CA, it can begin to unlock lower

CAs using the wrapped public key in the certificate, as described in Section 3.4.

At this point, authentication is still not established. As shown in Table 3.1, the next step

in the algorithm is for the server to verify the client’s digital signature on the certificate chain.

This verification is the key element in the authentication. A valid digital signature provides

a degree of authentication and message integrity [21]. The authentication aspect proves that

the signing private key corresponds to the public key recently obtained in the certificate chain.

The message integrity proves that the certificate chain is not altered during transmission.

Therefore, with a successful verification of the final digital signature, the client’s identity has

been proven to the server; the server has assurance that the public key it received from the

certificate chain does indeed belong to the client.

Server (Network) Client (Joining Aircraft)

Generate Diffie-Hellman Key Pair Generate Diffie-Hellman Key Pair
Listen on Port Connect to Port (via Jini)

Send own DH Public Key Receive Server’s Public Key
Receive Client’s Public Key Send own DH Public Key

Perform Key Agreement Perform Key Agreement
Create Initialization Vector

Send IV
Receive IV

Generate Symmetric Key Generate Symmetric Key
Create Cipher Stream Create Cipher Stream

Sign Certificate Chain
Receive Signed Certificate Chain Send Signed Certificate Chain

Extract Client’s Key from Cert. Chain
Verify Client’s Signature on Chain

Encrypt Network Session Key
Send Encrypted Network Session Key Receive Encrypted Key

Decrypt Network Key

Table 3.1: TTNT Authentication Algorithm
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Chapter 4

Prototype Implementation

The prototype implementation focuses on the areas of modeling, certification authority de-

sign, and improving the simulation interface. In Section 4.1 we discuss the impact of defining

the relationship between TTNT entities, and present a model for network simulation inter-

action. In Section 4.2 we examine the incorporation of a certification authority into our

simulation. In Section 4.3 we present the prototype simulation interface, followed by Section

4.4, which contains concluding remarks and observations concerning our prototype creation.

4.1 Relationship and Class Design

After the initial experimentation, we decided to approach further prototype simulations with

a higher level of software engineering in the software development process. Fig. 4.1 represents

a Unified Modeling Language (UML) [19] Class Diagram for the main components of our

software system design. The UML is a software industry standard for software modeling

and design. We use the UML class diagram in Fig. 4.1 to show the relationships between

classes in our modeled system. Defining the relationships in the simulation is critical to

the experiment procedures because a highly cohesive modeling with low coupling among

components will aid in future scalability. The fundamental design aspect of the TTNT

prototype simulation lies with how the three types of NCW entities interact. Since the

underlying concept of NCW is to have adaptive roles, we needed to design the simulation to
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support this property. The initial proposal consisted of a solution in which a shooter could

inherit properties from a sensor, and then if it needed to, also inherit from a decision maker

class. However, we use Java in the implementation, and Java does not support multiple

inheritance [4]. Therefore, we constructed the design in Fig. 4.1, which illustrates that

all three NCW entities inherit from the same, abstract class, AbstractEntity. Use of a

common superclass means that a sensor, a shooter, and a decision maker will all have a

common interface for interacting with other components. Even though the three entities

have similar interfaces, there are characteristics that are unique to their specific datatype,

which they were able to individually support in their particular subclasses. The abstract

entity design choice aided in laying a foundation for future experiments.

Figure 4.1: TTNT Prototype Simulation Class Diagram
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4.2 Incorporation of a Certification Authority Into the

Simulation

Once a TTNT entity has been issued a key, it may then participate in an ad hoc PKI

connection. The CA only distributes keys during pre-flight as a pre-condition for an entity to

join an ad hoc network. When entities attempt to join, we assume that they have obtained a

certificate from a CA. The certificates that are issued, and therefore the respective certificate

chains, are thus scalable to represent increasingly complex PKI connections. In this project,

we present a PKI with four layers, although in a different implementation the number of

layers may vary. A goal our experimentation presented in Chapter 5, is to measure the

joining algorithm’s performance in a net-centric environment. Although the hierarchical

PKI is necessary to obtain net-centric behavior through organized planning, decentralized

operation, our experiments focus on algorithm’s ability to operate in an ad hoc networking

environment.

In a probable application of TTNT, the CA would reside on an aircraft carrier or at

an airfield’s headquarters. These platforms are better suited to house a CA which requires

greater computational ability to create and issue mathematically complex public key certifi-

cates. When creating a public key, the CA must work with extremely large prime numbers

to proceed with the public key algorithms. These calculations are complex and require sub-

stantial computation time. Therefore, a fixed site such as an aircraft carrier would make an

excellent candidate for a local TTNT CA, because of the availability of dedicated servers to

perform the necessary certificate management. Once the carrier performs the initial key dis-

tribution, the aircraft may engage in the ad hoc joining process since they are now equipped

with the necessary prerequisites for the authentication algorithm.

The CA simulation portion is modeled using an open-source cryptographic library which

allows use of popular cryptographic algorithms [13]. In accordance with its license agreement,

the actual implementation uses pre-defined software packages that allow user-defined key

lengths for cryptographic algorithms.
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4.3 Simulation Interface Design

We applied the entity relationship analysis and the class diagram in 4.1 to construct the

simulation and its interface. As shown in Fig. 4.2, upon initiation of the simulation the

user is presented with a message window indicating that the network is being created, and

a screen that shows the simulation log. The simulation log window serves as a means to

validate the inner workings of the simulation, and also may be used as a debugging aid for

scenario development. As indicated in figure 4.2, the simulation created an instance of an

EntityContainer class, which will hold only one TTNT entity in this simulation.

Figure 4.2: Initial Interface Screen

In accordance with the scenario, the user attempts to join the network as a sensor. The

simulation notes this decision, and when Create! is selected, the simulation instantiates a

sensor entity. Fig. 4.3 shows the screen after the simulation creates a sensor object. The

sensor window indicates that a network is available to join. Additionally, the simulation log

maintains itself and notes the creation of a new Sensor object.
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Figure 4.3: Sensor Created

Once the user presses the authenticate button, the simulation proceeds with the au-

thentication process as per our algorithm. As Fig. 4.4 depicts, the steps of the algorithm

appear in the simulation log which records all the network events. As noted in the simulation

log, the sensor begins the authentication process via its entity container class. The platform

on which the sensor resides proceeds with the authentication. After a successful authentica-

tion, the network session key is returned, allowing the sensor, and all other existing entities

on that platform, to securely participate in the network.

4.4 Prototype Conclusions

This prototype provides an initial proof of concept. By defining the TTNT entity relation-

ships, we were able to explore and propose the interaction protocols needed for sensors,

shooters, and decision makers joining an ad hoc network without prior knowledge of the

authenticating network. For example, we observed that an aircraft with many sensors,

can authenticate all of its sensors at once if desired, rather than authenticate each sensor

individually. This is an important finding because it emphasizes a federated, distributed en-
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Figure 4.4: Successful Authentication

vironment and offers a method for doctrinal application. The creation of the simulation and

graphical interface illustrated that the cryptographic libraries are a requirement to provide

genuine authentication.
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Chapter 5

Implementation Overview

We implemented our algorithm using open source software running under the GNU/Linux

operating system. We used Sun Microsystems’ version of Java and cryptographic libraries

to provide RSA functionality. Likewise, we use Jini Networking Technology to provide

the application layer of our network stack, coupled with Sun’s Remote Method Invocation

(RMI) for network communications. Client/server testing occurred between two machines

each equipped with a Lucent Orinoco (silver) 802.11b wireless Ethernet card.

We developed two main Java packages for our algorithm development. The first, the

PKIGen package creates the specified digital certificates, including public key generation.

The second, Authentication package, is the source code that implements the authentication

exchange between a client and server.

5.1 Motivation for Jini Implementation

To establish the desired ad hoc joining implementation, we model the authentication proce-

dure as a Jini service. Since the authentication service is responsible for determining whether

or not a client can be allowed to access the network, the client must first request this ser-

vice before the network grants other service requests. Before a client can access the service

however, the service object must register with a lookup service. As shown in Fig. 5.1a, the

service uploads its proxy to the lookup service so that clients may download it. The object’s
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service proxy is downloaded by clients, and provides the interface for interaction with the

service. When a sensor object requests authentication from the network, the lookup service

responds with the downloadable proxy, as seen in Fig. 5.1b. Once the lookup server has

responded, the sensor then contacts the authentication server directly to proceed. This por-

tion of the joining algorithm is implemented in Jini by having the sensor object contact the

authentication server via its published proxy, which is shown Fig. 5.1c.

5.2 Modeling the Authentication Protocol as a Jini

Service

We modeled and tested the algorithm using Jini technology [11]. Jini’s net-centric infrastruc-

ture delivers network plug-and-play features making Jini useful in situations where a user

wants to request a service from the network, but does not know the server’s location. Using

Jini technology, the network provides the user with the desired service by first locating and

then installing the necessary components. As a result of the advanced network management

routines used by Jini, Jini provides automated synchronization of network resources, which

is an important requirement of TTNT.

Two other factors motivated the decision to model the authentication protocol as a Jini

service. First, a Jini service is universally available across the network to a client. In par-

ticular, a client does not need any location information about the service, since all of the

discovery methods are handled by the Jini protocol. Therefore, the specific network oper-

ations appear transparent to the client. This feature facilitates the net-centric component

required for TTNT operation. We use Jini’s default lookup service mechanism to support

the lookup routines for the authentication service. This service follows the traditional Jini

model, in which the service will first publish itself with a lookup service. When a client re-

quests the service, it probes for a lookup service and then downloads the requested service’s

proxy object. A proxy object is an interface that relays communication from one object to

another. In our implementation, the proxy object allows the client to communicate with the
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Figure 5.1: Abstract Jini Authentication Behavior

service without knowledge of the service’s location. The second advantage of authentication

protocol implementation as a Jini service is that the server on which the authentication

service resides can maintain supervisory privileges of the algorithm operations.

5.3 Key Generation and PKI Configuration

To create the digital certificates needed for the client authentication, we modified a hybrid

file encryption program that used a Rivest-Shamir-Adelman (RSA) public key pair and an

Advanced Encryption Standard (AES) symmetric key [10]. The hybrid scheme is optimal for

file encryption as symmetric cryptographic algorithms are generally faster than asymmetric

algorithms because symmetric algorithms are equally secure with smaller key sizes. This per-
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formance difference is especially noticeable when processing large blocks of data. Although

the certificates we are creating are not excessively large (when encoded and written to a file,

a public key is 294 bytes) our hybrid approach also serves as a barrier to cryptanalysis. The

RSA private key is only used to encrypt the AES key, which in turn encrypts the rest of the

message payload, thus decreasing the data encrypted by a private key. As discussed in Sec-

tion 3.3, by encrypting the AES key with the RSA private key, the AES key encrypts more

plaintext information which reduces the possibility for successful cryptanalysis on the RSA

private key. We chose key lengths of 2048 bits for the RSA keys and 256 bits for the AES

keys. The disparity in key length derives from the two different cryptographic algorithms.

Since the RSA algorithm is based on factoring large prime numbers in order to ensure com-

putational security, a RSA key is usually significantly larger than symmetric keys, like AES,

that maintain the same level of security.

Modifications to the hybrid file encryption software included adding the certificate au-

thority’s data structure to the certificate. The data structure is a Java fixed byte array that

contains fields which hold characteristic information about the key, the key issuer, and the

owner of the key. The purpose of the data structure is to aid other TTNT participants in

determining the characteristics and access policies of different keys. The characteristic field

information is similar to the X.509 certificate standard which provides a complete description

of different fields, and is a widely accepted standard for commercial digital certificates [21].

In our implementation, relevant characteristics are inserted into the data structure during

the key creation process and are appended to the rest of the certificate.

The goal of this modified file encryption program is to produce certificates that will aid

in the authentication process in a TTNT ad hoc join. Therefore, the CAs and corresponding

certificates need to follow our four layer PKI specifications. In order to establish authentic

PKI criteria, we consulted numerous Internet standard Request For Comments (RFCs) that

describe the security focused process of the initial CA creation. Although this is a research

implementation, we considered and applied some of the security policies from a commercial

PKI [2]. Specifically, we abstracted the CA and key creation code and procedure from the

authentication implementation into a separate Java package. This abstraction also empha-
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sizes that efficient and secure ad hoc connectivity can occur in a net centric environment

through a well organized PKI. During the ad hoc authentication process, the joining algo-

rithm relies on the trust association given to the CAs and JEs, during the initialization of

the PKI, to instantly establish the existence (or lack) of a trust relationship between two

TTNT entities.

5.4 The Authentication Procedure

We created a Java package, Authentication, that detailed the specific algorithm proce-

dures. The code in this package uses a cryptographic library and Jini networking technology

to implement the authentication protocol. As is typical with Jini service design, there are

several iterations of interfaces to facilitate ease of modification at each level [7]. Table 5.1

describes the files in the Authentication package. AuthenticationClient.java and Authenti-

cationService.java are the two files that contain the main implementation of the client and

server side algorithm.
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File Description

AuthenticationClient.java Contains the main logic for the

client-side implementation

AuthenticationService.java Contains the main logic for the

server-side implementation

AuthenticationServiceProxy.java Forwards the methods calls from the Client

Interface to the Network (RMI) Interface

AuthenticationServiceWrapper.java Contains the necessary Jini functions

to register the service with the network

CADataStructure.java Specifies the field descriptors

in a TTNT certificate

ClientAuthenticationInterface.java Allows the client implementation to

communicate with the Jini Service Object

DiffieHellmanExchange.java Provides the ability for a one-time

Diffie Hellman Key Exchange

RMIAuthenticationInterface.java Allows the server implementation to

communicate with the Jini service object

Utility.java Various iterative tasks like file operations,

decryption and encryption capabilities

Table 5.1: Authentication Package File Contents
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5.5 Authentication Implementation Details

When the server is created, it immediately pre-processes all of the computationally intensive

operations so as not to slow down the ad hoc authentication. Fig. 5.2 shows the code

fragment that initializes the server. The first operation performed is the creation of an

initially empty stack data structure which will eventually hold the certificates from the

client’s certificate chain. The first operation in this code is the generation of the symmetric

network session key. If a successful authentication occurs, the client receives a copy of

the key, which is shared among all authenticated participants on the network. Method

loadPublicKeyRing invoked in the next line, searches through the server’s public key ring

and loads into memory all the previously validated keys. Although the only public key the

server needs to authenticate any other entity is the root CA’s key, the possession of other

trusted public keys in the key ring serves to reduce authentication time and does not cause

a security issue because the server previously authenticated each key on its key ring.

public AuthenticationService () throws RemoteException

{

clientCertificates = new Stack ();

try

{

generateNetworkSessionKey ();

loadPublicKeyRing ();

System.out.println ("Authentication Service Running");

dH = new DiffieHellmanExchange ();

}

catch (Exception e)

{

System.out.println (e.toString ());

}

}

Figure 5.2: Authentication Service Initialize Code

After the initialization of the Diffie-Hellman key exchange protocol with the instantiation

of a new DiffieHellmanExchange object, the server waits for client interaction. There is
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a subtle difference here between a traditional client/server application and our net-centric

empowered implementation: traditional network services wait for the client to connect di-

rectly, while the Jini service waits for the client to invoke its methods directly. Through

Jini technology, a client may directly access the methods and data of the server as if it were

local code. This method invocation, combined with the interface abstraction described ear-

lier, allows specific client implementations to differ, as long as they still interface with their

network mediators. In our implementation, the ClientAuthenticationInterface mediates

between the client and the RMI protocol. If we wanted to replace RMI with a different net-

work protocol, we need to ensure that the AuthenticationClient class can still properly

work with the ClientAuthenticationInterface class. If the client implementation needs

to receive an update, or a complete change, the software can be easily upgraded without

disturbing the network performance.

After the server is running and waiting for a connection, the client initiates the rest

of the algorithm. After the client discovers the authentication service using standard Jini

lookup policies, it runs the authentication code. Fig. 5.3 shows the subroutine that out-

lines the main client authentication logic. This authentication method is called from the

AuthenticationClient class’ main method, and the Jini service object is passed to this

function. The service object is modeled as a ClientAuthenticationInterface object that

allows the client to interface with the network protocol. Again, this abstraction supports

further expansion, and allows even the network protocol to change without impacting the

client’s implementation. The client initiates the Diffie-Hellman algorithm by running the

invokeClientSide method from the DiffieHellmanExchange class. Both the client and

the server generate the same symmetric key from the Diffie-Hellman exchange [21], which

the client will use to encrypt its certificate chain when sending it to the server.

The client sends the server its entire certificate chain by invoking the server’s method:

sendServerSignature. The code fragment shown in Fig. 5.4 depicts some of the operations

performed on the client’s certificate chain. The server decrypts the certificate chain using

the arranged Diffie Hellman symmetric key. Once the server obtains the key, it must then

traverse the certificate chain, verifying each certificate to obtain the client’s public key.
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public void authenticate (ClientAuthenticationInterface servobj)

{

try {

dH.invokeClientSide (servobj);

DHSessionKey = dH.getClientSessionKey ();

//Signing and sending over client certificate chain

signCertificateChain (servobj);

//Receive the Encrypted Network Session Key

System.out.println ("Receiving Encrypted Network Session Key");

byte[]encryptedNetworkSessionKey =

servobj.getNetworkSessionKey ();

decryptNetworkSessionKey (encryptedNetworkSessionKey);

} catch (Exception e) {

System.out.println ("Error: " + e.toString ());

}

}

Figure 5.3: Authentication Client Initialize Code

The final verification occurs when the server checks the signature on the entire certificate

chain. Until this point, the algorithm is vulnerable to a man-in-the-middle attack, in which

a malicious user masquerades as the real client. However in our approach, the server verifies

the client signature on the entire certificate chain. Therefore, even if an illegitimate user

completes the algorithm as far as signing the certificate chain, when the signature is checked

for validity against the public key obtained from the public key extraction, the validation

will fail.

In the extractPublicKeyMethod, the server traverses the client’s certificate chain, com-

paring the client’s public keys to the public keys stored in the server’s key ring. There are

two main operations in this method: the first determines if the server has any of the public

keys associated with the client’s certificates in the certificate chain, the second focuses on

verifying each certificate in the client’s certificate chain. The while loop in Fig. 5.5 goes

through the process of comparing each one of the client’s certificates stored in the Stack data

structure, clientCertificates, to those keys stored in its own public key ring.
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public void sendServerSignature (byte[] encryptedClientSignature)

throws RemoteException

{

...

extractPublicKey ();

clientPublicRSAKey = Utility.loadRSAPublicKeyFromFile

(KEY_RING_PATH + clientPublicKeyFile);

Signature signature = Signature.getInstance

("MD5WithRSA");

signature.initVerify (clientPublicRSAKey);

signature.update (certChainWithTimeStamp);

boolean authorized = false;

try {

authorized = signature.verify (clientSignature);

} catch (SignatureException se)

{

System.out.println ("Invalid Padding ");

}

if (authorized)

{

System.out.println ("Client signature matches");

}

else

{ System.out.println ("Client signature is INVALID,

suspect Man-in-the-Middle ATTACK!");

System.out.println ("PROGRAM WILL NOW TERMINATE");

System.exit (0);

}

}

Figure 5.4: Signature Verification Code
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Our actual implementation improved our prototype version by the addition of a legitimate

cryptographic library. This has allowed us to obtain a more accurate simulation and enabled

us to produce an implementation with full secure functionality. We designed the software to

allow us the flexibility in modeling different TTNT scenarios and to test our PKI domain

sets.

private void extractPublicKey () throws Exception

{

System.out.println ("Beginning to extract Client’s Public Key");

boolean haveCertificate = false;

String tempCertificateName = new String ("null");

String clientEncryptedPublicKeyFileName = new String ("null");

Stack reverseClientCertificates = new Stack();

while (haveCertificate == false)

{

tempCertificateName = String.valueOf (

clientCertificates.pop ());

reverseClientCertificates.push(tempCertificateName);

if (clientEncryptedPublicKeyFileName.equals("null") )

clientEncryptedPublicKeyFileName = tempCertificateName;

System.out.println ("\tThe current value of tempCertificateName

is: " + tempCertificateName);

haveCertificate = searchKeyRing (tempCertificateName);

}

traverseChain(reverseClientCertificates);

return;

}

Figure 5.5: Certificate Extraction Code



42

Chapter 6

Experiments

We conducted the experimental implementation of the joining algorithm using Sun Microsys-

tems’ Jini Technology version 1.2. In Section 6.1 we describe the procedures of the algorithm

as applied to joining the ad hoc network. In Section 6.2 we illustrate a potential TTNT sce-

nario application. In Section 6.3 we examine the assumptions specific to the experimental

scenario. In Section 6.4 we outline the extended experiments and we present our hypothesis

for the results.

6.1 Joining Phases

Our joining algorithm is divided into three phases: initialization, discovery, and authentica-

tion. As shown in Fig. 6.1, the initialization phase requires that the authentication service

provider register itself with a decision maker entity. We assume that this phase occurs before

a joining entity begins authentication. This allows the decision maker entity to provide a

Figure 6.1: Initialization Phase of the Joining Algorithm
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dynamic lookup service for services that subsequently register with the decision maker. In

our scenario, a joining entity searches for and locates a TTNT network during the discovery

phase. To focus our discussion of operations during this phase, we make the assumption

that the network exists, and that the joining entity discovers the network.

Fig. 6.2 depicts the discovery phase and illustrates a joining entity attempting to locate

a network. The actual discovery protocol is independent of the joining algorithm. A multi-

cast protocol is preferable due to the wireless nature of TTNT, and we currently use Jini’s

multicast protocol [11] for our implementation.

Figure 6.2: A Multicast TTNT Discovery

In order to authenticate, the joining entities participate in the multi-part procedure,

which was described in detail in Section 3.5. Here we present the authentication process

from the clients perspective: obtain a proxy; participate in a Diffie-Hellman key exchange;

send a certificate chain to an authentication server; and await authentication service ac-

knowledgment before the network finally accepts the client.

6.1.1 Obtain Proxy

As shown in Fig. 6.3a, the first procedure in the authentication phase is for the lookup service

provider (LS) to provide a proxy to the joining entity (JE) so that it may communicate

directly with the authentication service provider (AS). We stress that the JE does not need

prior knowledge about the location or existence of the AS, it only has to find the LS via a
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multicast discovery protocol.

6.1.2 Participate in Diffie-Hellman Key Exchange

The client calculates a Diffie-Hellman key pair, sends the server its public key, and then

generates a symmetric session key to encrypt its certificate chain. Our incorporation of the

Diffie-Hellman key exchange protocol into our algorithm was described in Section 3.5.

Figure 6.3: TTNT Authentication Phase Overview

6.1.3 Client Sends Certificate

Once the steps shown in Fig. 6.3a-c have completed, and both the client and the server

have generated the same symmetric key, the client encrypts its certificate chain and sends
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it directly to the authentication service, which is depicted in Fig. 6.3b. The authentication

service then extracts the client’s public key, computes the validity of the client’s digital

signature, and decides whether or not to authenticate the entity based on the signatures

validity.

6.1.4 Authentication Service Acknowledgment

As shown in Fig. 6.3c, the authentication service responds directly back to the joining entity

with an acknowledgment. The client sends pertinent routing information to the service when

sending its certificate chain, ensuring that the service is able to respond to the client directly.

If the acknowledgment is positive, the server encrypts the network symmetric session key

with the client’s public key, obtained from the certificate chain, and sends it to the client,

otherwise the client is not authenticated.

6.1.5 Acceptance

Assuming that the entity was positively authenticated, the client may now participate in the

TTNT network, as shown in Fig. 6.3d. Since the client now possesses the network session

key, it may send and encrypt data over the network, and only authenticated participants are

able to correctly decrypt the traffic. Now that the client is authenticated, it may also serve

a role in authenticating other entities desiring to join the network.

6.2 Reference Scenario

In Fig. 6.4, the authentication procedure discussion from Section 6.1 is applied to a prototyp-

ical TTNT scenario. In this scenario, a sensor on the aircraft is trying to join a pre-established

network of entities from similar aircraft. The sensor may be the aircraft’s radar that has

discovered a target and it is attempting to communicate to neighboring aircraft that a target

exists. The joining aircraft initiates the algorithm. Once the network has heard the request,

the network (via the lookup service provider) responds with the location of the authentica-
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Figure 6.4: TTNT Scenario Application

tion service provider, which as shown in Fig. 6.4, resides on the decision maker (diamond)

aircraft. The joining aircraft then contacts the authentication service directly and sends its

certificate. If the authentication is successful, the authentication service responds with a

session key. The session key provides the joiner access to the network and its services. The

services in this case might be weapons on another aircraft that are appropriate to engage

the target.

6.3 Reference Scenario Assumptions

Our experimentation encompasses the modeling of different TTNT scenarios using the Jini

infrastructure. We consider TTNT entities in the reference scenario when one entity is

requesting to join an established network, and the node it is communicating with shares

a local CA. This is a situation in which an ad hoc connection is formed, and the joining

algorithm performs at its fastest because both parties’ public keys are signed by the same

local CA. We assume that the two entities have a high level of trust due to their pre-

established relationship. The joining algorithm scales up to handle similar scenarios when
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the common CA is located outside the local group. Although the number of steps required to

find the common CA increases in these cases, the entities still have a pre-defined relationship

that establishes complete trust a priori.

6.4 Extended Scenarios

To explore the scalability between local TTNT participants (a same-ship PKI domain classi-

fication) and our most complex PKI domain set, represented by coalition forces, we changed

the client’s certificate chain to reflect a different CA structure. The Joining Entities (JE)

shown again in Fig. 6.5, which are the fourth layer of our PKI, are the main actors in the

experimentation. In each experiment, JE40 acts as the authentication server. Therefore,

there are four different experiments, representing the four eligible clients: JE41, JE42, JE43,

and JE44.

Figure 6.5: TTNT Certification Authority Structure Revisited

6.4.1 Same Ship Scenario

In this scenario, JE41 is attempting to connect to the server, JE40. According to the PKI

classification, this is a same ship environment, where, for example, there are two F/A-18
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Hornets from the same aircraft carrier trying to establish a connection. In all the experi-

ments, we represent JE40 as carrier-based F/A-18. We expect that this scenario will have

the fastest running time since both aircraft share the same CA.

6.4.2 Same Service Scenario

In the JE40-JE42 experiment, the two participants do not share the same local CA. The shared

CA in this scenario is CA20, which requires JE40 one additional certificate verification. We

represent JE42 as a S-3 Viking trying to join to authenticate to the F/A-18 Hornet.

6.4.3 Joint Scenario

This experiment involves two joint aircraft, the F/A-18, and a USAF A-10, which is JE43.

The shared CA among these two aircrafts is now CA10, which requires two additional certifi-

cate verifications. Although we have chosen to represent this scenario with a USAF aircraft,

all aircraft not in the same service as the server fall into this domain classification, and

exhibit the same certificate chain length.

6.4.4 Coalition Scenario

The scenario where there is the greatest certificate chain length difference from the client

and the server is when JE44 attempts to authenticate with JE40. We depict this situation as

a British Eurofighter aircraft connecting with same F/A-18 described in the earlier experi-

ments. The certificate chain difference is greatest in this scenario because the shared CA is

CA00, the root CA.

6.4.5 Hypothesis

We expected that there would be a strict linear progression from the same ship scenario to the

coalition scenario. The only variable in these experiments is the PKI domain classification,

which indicates a different certificate chain length for each experiment. For example, the
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certificate chain in the coalition experiment is four times as long as the same ship service,

and we predicted that each experiment would grow by a constant factor. Also, we assumed

that there would be a high level of consistency within each experiment since there is no

change in the certificate chain length.
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Chapter 7

Analysis of Results

The implementation supported our algorithm’s design goals of allowing distributed, ad hoc,

and net-centric connections. The location and procedures of the authentication service are

transparent to client. The client accesses the service through a net-centric lookup method,

allowing the client to form an ad hoc connection. The client connects to the service without

knowledge of the service’s location, and without knowledge that the service indeed existed.

7.1 Measurement Decision

Our initial goal for the experimentation was to measure the clock time (in milliseconds) for

our algorithm’s authentication of a client in each of the four scenarios: same ship, same

service, joint, and coalition. We determined that the authentication time was best measured

as the time required to proceed through the algorithm, treating all necessary key generation

as pre-processing artifacts external to the performance of our algorithm. We assume that

before a client/server pair begins authentication they will pre-generate the session keys to

prevent unnecessary delays in the actual procedure. The measurements are recorded by an

AuthenticationClient object as shown in Fig. 7.1.

To facilitate the collection of our measurements, a Java Date object, runTime, is initial-

ized twice to obtained the time immediately before authentication, and the time directly

afterwords. The authenticate method gives the details for our authentication process and
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Date runTime = new Date ();

startTime = runTime.getTime ();

System.out.println ("Start time is: " + startTime);

cl.authenticate (servobj);

runTime = new Date ();

endTime = runTime.getTime ();

Figure 7.1: Authentication Measure Probe

is located in the AuthenticationClient.java file, shown in Fig. 7.1.

7.2 Initial Results

We ran the algorithm in each scenario six times, and each time collected the time required

for the authentication process for all four scenarios as shown in Table 7.1. Due to the

considerable amount of time necessary to initiate the necessary software for the experiments,

and then reset the conditions for each trial, we only had time to collect six measurements

per client in accordance with our experiment timeline. In Table 7.1, the bottom row gives

the mean of all experiment scenarios of a specific type. Upon analysis, the results clearly

indicate that the increase in time from the first scenario to the last is not linear, and did not

conform to our initial projections.

41 42 43 44
7407 8454 7052 7896
8516 7477 8933 17131
8411 9935 8389 9751
11607 6729 7881 9341
7866 6718 9173 10925
10724 7045 7078 10564

9089 8136 8084 10935

Table 7.1: Total Authentication Running Time (ms)
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7.3 Investigation of Experimentation Environment

The non-linear growth shown in Table 7.1 contradicts our initial hypothesis of a steadily

increasing running time. To discern the reason for this unanticipated behavior, we investi-

gated two major environmental factors. The first investigation was to ensure that the Java

run-time environment was acting as expected. The results from the this test are discussed

in Section 7.3.1, and indicate that the Java Remote Method Invocation Daemon (rmid) was

causing unexpected delays involving threads created by the Java Virtual Machine that were

unrelated to our simulation. As a result we altered our measurement indication to obtain

more meaningful data. The second area we investigated was the time required to perform

only the certificate extraction in our algorithm, which is discussed in Section 7.3.2.

7.3.1 Java Run Time Benchmarking

To explore the possible causes for the unanticipated results we obtained from our simula-

tion, we challenged our assumption that the Java run-time environment is computationally

consistent. The Java programming language runs via a Java Virtual Machine (JVM) for pro-

gram execution. Any machine with a JVM, regardless of the operating system or platform

specifications, is able to run any Java application. In order for a Java application to run,

there must be a JVM in the Java run-time environment (JRE). If the JRE is not a stable

computing environment, for example if a Java application continuously runs and consumes

system resources, a Java application’s performance may suffer. To test the JRE, we wrote

a simple Java application based on a standard benchmark that performs a mathematical

operation,
(√√

10 +
√

10
)

and assigns its result to a temporary value, as shown in the Java

source code in Fig. 7.2. We perform this operation two million times, and record the total

time required for the entire two million assignments. Further, in this program we repeat

each of the two million assignments two hundred times so that we can make a substantial

measurement from a runtime perspective.

The results of this benchmark are shown in Fig. 7.3 and indicate stability in the JRE

when running a Java application. The running time remains within a two millisecond band
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import java.io.*;

import java.math.*;

import java.util.Date;

public class comparisons

{ public static void main( String args[])

{ Date startTime;

Date endTime;

double temp = 0;

for (int y=0; y<200; y++) {

startTime = new Date();

for (int x=0; x<2000000;x++) {

temp = Math.sqrt( (Math.sqrt(10) * Math.sqrt(10) ));

}

endTime = new Date();

System.out.println(y + " " + String.valueOf(

endTime.getTime() - startTime.getTime() ));

} } }

Figure 7.2: JRE Benchmarking Program: comparisons.java

throughout the entire duration of the benchmark. The most probable reason for the ten

millisecond difference between the first measured time and the rest of the experimentation,

shown in Table 7.1 is that there are many initialization procedures that are handled internally

by Java that slow down only the first run.

The results of this initial benchmarking were inconclusive; the analysis of the timing

did not offer an explanation as to the non-linear algorithmic running time. Therefore, we

decided to run the benchmark again, this time including the conditions that exist while our

algorithm implementation runs. Since we implemented our algorithm using Jini networking

technology, there are some additional procedures that must be included at run-time to start

a Jini application. To provide the ability to download and transport code, Jini applications

rely on the RMI protocol [11]. Jini and Java applications may use the RMI protocol when the

RMI daemon (rmid) is running on the system. When we re-tested our benchmarking program

with rmid running, we noticed significant delays in time, on the order of seconds, which is

shown in Fig. 7.4. We had encountered configuration problems while using rmid earlier

in our experimentation, and even though we were able to obtain the desired functionality,
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Figure 7.3: JRE Performance for Simple Operation

rmid continuously produced output to the screen of caught exceptions and warnings. Our

analysis from the data shown in 7.4 is that the rmid daemon is interfering with normal

Java/Jini application behavior. Since our algorithm’s implementation relies heavily on rmid

for network communication, we concluded that rmid impeded the algorithm’s total run time

and caused a disparity in the measurements we collected.

7.3.2 A More Precise Measurement Method

To obtain more meaningful statistics for our algorithm’s performance in terms of scalability,

we redefined the measured code sample. As discussed in Section 7.1, we originally mea-

sured the time required to complete the entire authentication procedure. However, due to

the interference from rmid, these measurements do not accurately demonstrate our algo-

rithm’s ability to operate in a net-centric, ad hoc environment. Therefore, we analyzed the

time required for the server to perform the certificate extraction process as this is the core

computational portion of our algorithm. The certificate length is the only variable between
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Figure 7.4: JRE Performance for Simple Operation with rmid Running

our experiment batches, and is dependent on the particular JE that is attempting to au-

thenticate. All other factors, such as the distance between machines, the stability of the

network, and the overall processor load are constant throughout the experimentation. The

time sampling occurs immediately before and after the extractPublicKey method is in-

voked, as presented in Fig. 5.5. The server runs this method locally, without any network

communication, and we expected that by eliminating the rmid portions of the algorithm,

the results would illustrate the true growth of our algorithm in terms of scalability.

When we measured the time required for certificate extraction (CE), we also recorded

the entire running time, as we did in Section 7.2. As expected, the CE times are more

consistent and more indicative of linear growth. As we concluded, the total running time

measurements do not produce any recognizable correlation due to rmid interference. Al-

though rmid is running while the CE occurs, we concluded that the effect is reduced in these

experiments because the server performs the CE without using the RMI protocol for network

communication. Table 7.2 presents our subsequent experimental data and gives the arith-
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41 42 43 44 41 42 43 44
362 439 470 586 7507 15382 7379 7717
344 427 508 590 7532 7349 7479 7998
359 453 491 578 7474 7148 7820 7671
371 415 486 588 7348 7280 9400 7452

Means
359 434 489 586 7465 9290 8019.5 7709.5

Standard Deviations
11.2 16.3 15.7 5.26 81.7 4060 940 224

Table 7.2: Certificate Extraction Time vs. Total Run Time (ms)

metic means of each experiment batch and their respective standard deviation to the mean.

We concluded from the precision of the standard deviations between the total running times

and the CE times that the rmid effect is greatest when the algorithm performs its network

communications.

Fig. 7.5 is a scatter plot of the CE times, per client. Also included in this graph is the

mean time of each grouping plotted with a line between experiment batches to show the

linear correlation. As illustrated in the graph, there is a near linear relationship between

each experiment batch.

7.4 Analysis Conclusions

We conclude from our experimental results that ad hoc, distributed, net-centric joining can

occur. As a result of the initial experimentation, the Java benchmarking, and the revised

experiments, we concluded that our joining algorithm maintains its expected theoretical

performance. By our conclusions, we expect a coalition fighter to experience only marginal

delays in authentication, measured as a delay of 250 ms in our implementation, when con-

necting to a server with the largest difference in certificate chain length. However, our

algorithm does experience delays depending on the choice of implementation and network

protocol. Although Jini provides automated network centric capabilities, especially in terms

of lookup and discovery protocols, the added complexity for automation hinders performance
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Figure 7.5: Server Certificate Extraction Time per Client

at run time.

However, in more practical terms the network should be able to accommodate a joining

entity that lies outside of the TTNT domain classifications. In a typical TTNT application,

this would represent a tactical fighter entity attempting to join a network composed of aircraft

from a different branch of military service that may not have the required PKI certificates,

or with certificates that have expired. To avoid excluding a legitimate participant under

these circumstances, participating members of the network could be allowed to vouch for

the identity of a entity and allow it to join. The challenging problem in this scenario is

that the joining entity may need rapid access to network resources, for example information

concerning a nearby target, and cannot tolerate the access time delay due to a lack of, or

complex, certificate chain configuration. To facilitate a join where an entity can produce

characteristics necessary for proper PKI authentication, our joining algorithm could include

a trust assigning portion.
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The trust assignment procedure may classify entities into different trust levels based

on the security credentials they provide. For example, an entity that can produce a fully

qualified certificate will be assigned to the most trusted level, whereas an entity with an

expired certificate will be placed in one of the lowest levels. Included in the trust assignment

process is the ability to accept recommendations from other entities. Therefore, entities

already on the network may make trust assertions for a joining entity, which will reflect in

the joining entity’s trust classification. The security policies of TTNT will need to account

for the addition of any such marginally trusted entities to maintain network security. The

addition of trust classification into the TTNT joining algorithm can be effected to support

rapidity of access without compromising security. This trust assigning algorithm would

therefore need to adhere to the following assumptions:

- That not all entities on the network are fully trusted.

- An entity’s trust rating may increase or decrease.

- A federated network of entities can perform effective trust management.

However, the trust assignment algorithm can be expected to involve only a small per-

centage of the joining entities, as most of the joining entities will still fall within our regular

PKI classification. Furthermore, in our experiments, there is only a 250 ms delay variance

between the greatest difference in the certificate chain size. If we enable trust assignment for

our algorithm, in the worst case, it would only improve the run time by 250 ms, but it would

not alleviate the network protocol problems. Therefore, although trust assignment may im-

prove the overall flexibility and scalability of our joining algorithm, it will not significantly

increase its performance.
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Chapter 8

Conclusions

In this report we illustrated the shortcomings of the standard Jini and Bluetooth algorithms

with respect to the needs of TTNT. Jini neither defines an authentication algorithm nor

incorporates trust-based decisions. Bluetooth applies a symmetric key algorithm that fails

to provide a sufficient level of security for TTNT.

We discussed various utility protocols that support TTNT, and described several multi-

cast discovery protocols that could support the initial step in the joining algorithm. We also

discussed the need for a distributed public key protocol to enable ad hoc connections in a

dynamic environment.

We presented an algorithm that facilitates wireless ad hoc joining requests with the

key assumption that an a priori public-key infrastructure is in place. Our experimental

results support our hypothesis that our algorithm can allow successful authentication in

a net-centric, ad hoc environment. We have also shown that the delays incurred in our

algorithm are minimal compared to the delays incurred by the network implementation.

Our analysis shows that we can expect the network to authenticate a F/A-18 and a British

Eurofighter with minimal difference in authentication time. We demonstrated that our

algorithm supports network centric warfare characteristics, specifically the ability to provide

centralized management through our PKI, and decentralized operation through our ad hoc

authentication process.

In future work, we are considering whether a separate algorithm can be created to per-
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form trust management and maintenance after the entity has joined the network. This

algorithm’s focus would be to promote an entity’s trust rating based on its behavior, and

would dynamically poll the network for updated trust ratings. There is also potential for

further research involving probability analysis of successful joins within the trust algorithm,

especially in two scenarios: when a legitimate user is denied access, and when an illegitimate

user is granted access. Also, we are considering a comparison of our algorithm with a join-

ing algorithm that does not assume that an implemented PKI exists. In the absence of a

PKI, the network would be truly distributed and decentralized, changing many assumptions

concerning security.
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Appendix A

Project Timeline Reflection

In accordance with our submitted project timeline, all of the initial familiarization steps have

occurred, specifically familiarization with Jini Networking Technology and the configuration

and installment on a Wireless Local Area Network. Before the network setup, we conducted

extensive research on existing wireless networking hardware to identify a product that was

conducive to our research needs. We obtained the hardware in the early fall, and successfully

configured and tested the network. Three personal computers running the Linux operating

system, each equipped with an 802.11b wireless Ethernet card, make up the network. With

the wireless link, the computers can communicate with each other at the relatively high

speed of 11 megabits per second.

This work was based on the initial experimentation completed early in the semester,

builds on an independent study class taken the previous year, SI486, and experiences over an

internship I participated in involving mobile, ad hoc networking at Naval Research Labs. We

were on schedule designing and classifying the relationships and structure of the simulation.

The simulation was improved to support the Performance Testing stage. We performed

another series of experiments and collected empirical data of the algorithm running times.

This data has been analyzed to determine the effects of the algorithm’s performance in

a net-centric environment. We have submitted two papers to peer reviewed networking

conferences. One has been accepted; one is under review.

We fell behind our proposed schedule at the beginning of the second semester due to
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numerous configuration errors. Specifically, we encountered great difficulty attempting to

create a certification authority (CA) using a cryptographic library. Instead of implementing

a full featured CA, we decided to only create the necessary functions that a CA would provide

our experiments, using more accessible packages. Another configuration problem, this time

with our chosen software implementation technology, caused delays in our advanced network

testing later in the semester. Through the help of numerous online support communities, we

were able to alleviate the problem and perform the necessary experimentation in mid-March.
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Appendix B

AuthenticationClient.java

/*

* AuthenticationClient.java

*

* This file contains the details for a TTNT client to Authenticate

* with a Authentication Server

*/

package Authentication;

import net.jini.lookup.ServiceDiscoveryManager;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceItem;

import java.rmi.RemoteException;

import java.rmi.RMISecurityManager;

import java.io.*;

import java.net.*;

import java.math.*;

import java.security.*;

import java.security.spec.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import javax.crypto.interfaces.*;

import java.util.Date;

import Authentication.Utility;

//for sending encrypted messages to server

import org.bouncycastle.util.encoders.Base64;
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import Authentication.DiffieHellmanExchange;

/**

*

* @author joshua datko

*/

public class AuthenticationClient

{

/** Creates a new instance of AuthenticationClient */ public

AuthenticationClient (ClientAuthenticationInterface theClient,

String priKeyFile) throws Exception

{

authInterface = theClient;

privateKeyFile = priKeyFile;

dH = new DiffieHellmanExchange();

}

public void authenticate (ClientAuthenticationInterface servobj)

{

try

{

dH.invokeClientSide (servobj);

DHSessionKey = dH.getClientSessionKey ();

//Signing and sending over client certificate chain

signCertificateChain (servobj);

//Receive the Encrypted Network Session Key

System.out.println ("Receiving Encrypted Network Session

Key"); byte [] encryptedNetworkSessionKey =

servobj.getNetworkSessionKey ();

decryptNetworkSessionKey (encryptedNetworkSessionKey);

//communicate (servobj);

}

catch (Exception e)

{
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System.out.println ("Error: " + e.toString ());

}

}

private void signCertificateChain (ClientAuthenticationInterface servobj)

{

System.out.println ("Entering signCertificate Chain");

String certChainFile = privateKeyFile.substring (0, 10) + ".chain";

String path = new String ("/home/joshua/jiniscript/");

certChainFile = path.concat (certChainFile);

try

{

clientRSAPrivateKey = Utility.loadRSAPrivateKeyFromFile

(privateKeyFile);

//Timestamp is 8 bytes

long timestamp = System.currentTimeMillis ();

System.out.println ("Appending time stamp: " +

String.valueOf (timestamp) );

ByteArrayOutputStream baos = new ByteArrayOutputStream ();

DataOutputStream dos = new DataOutputStream (baos);

dos.writeLong (timestamp);

//load the Certificate Chain from File

System.out.println ("Loading Certificate chain from file:

" + certChainFile);

FileInputStream fisChain = new FileInputStream (certChainFile);

//Read in the certificate chain

int theByte = 0;

while ((theByte = fisChain.read ()) != -1)

{

baos.write (theByte);

}



68

byte[] bytesToSign = baos.toByteArray ();

baos.close ();

//***************Sign the byte array

Signature signature = Signature.getInstance ("MD5WithRSA");

signature.initSign (clientRSAPrivateKey);

signature.update (bytesToSign);

byte [] signatureBytes = signature.sign ();

//Encrypt certificate chain with Diffie-Hellman generated

Session Key

Cipher cipher = Cipher.getInstance ("DESede/ECB/PKCS5Padding");

cipher.init (Cipher.ENCRYPT_MODE, DHSessionKey);

byte[] encryptedBytesToSign = cipher.doFinal (bytesToSign);

byte[] encryptedSignatureBytes = cipher.doFinal (signatureBytes);

//Sending certificate chain and signature bytes to server

System.out.println ("Sending certificate chain and bytes

to sign to server");

System.out.println ("\tWhich are encrypted with the

Diffie-Hellman session key"); servobj.sendServerCertChain

(encryptedBytesToSign); servobj.sendServerSignature

(encryptedSignatureBytes); } catch (Exception e) {

System.out.println (e.toString ()); }

}

/**

* @param args the command line arguments

*/

public static void main (String args[]) throws Exception

{

//Get the client’s private key, prompt the user to enter

BufferedReader in = new BufferedReader (new InputStreamReader

(System.in));
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System.out.println("Enter the Client you wish to use (41, 42,

43, 44) :");

String clientString = in.readLine();

String clientPrivateKeyFile = "CA_" + clientString + "_2048.pri";

FileOutputStream log = new FileOutputStream ("logFile.txt");

DataOutputStream out = new DataOutputStream (log);

// Set a security manager.

if (System.getSecurityManager () == null)

{

System.setSecurityManager (new RMISecurityManager ());

}

ServiceDiscoveryManager sdm =

new ServiceDiscoveryManager (null,null);

// Set up the template

Class[] classname = new Class[]

{ClientAuthenticationInterface.class};

ServiceTemplate template =

new ServiceTemplate (null,classname,null);

// Block until a matching service is found

System.out.println ("Looking for Authentication Service");

ServiceItem serviceitem =

sdm.lookup (template, null, Long.MAX_VALUE);

// Use the Service if has been found.

if ( serviceitem == null )

{

System.out.println ("Can’t find service");

} else

{

System.out.println ("Authentication Service Found");

ClientAuthenticationInterface servobj =

(ClientAuthenticationInterface) serviceitem.service;
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long startTime, endTime, algorithmRunningTime;

long times[] = new long [10];

int x = 0;

System.out.println ("************************

****************************************************");

System.out.println ("************************

****************************************************");

System.out.println ("************************

****************************************************");

System.out.println

("***************************************

*************************************");

// Create and then use the simple client

//args[0] = private key file

AuthenticationClient cl = new AuthenticationClient

(servobj, clientPrivateKeyFile);

Date runTime = new Date ();

startTime = runTime.getTime ();

System.out.println ("Start time is: " + startTime);

/*

*

*/

cl.authenticate (servobj);

/*

*

*/

runTime = new Date ();

endTime = runTime.getTime ();

System.out.println ("End time is: " + endTime);

times[x] = endTime - startTime;

out.writeChars (String.valueOf (times[x]) );

out.writeChars (String.valueOf ("\n"));

System.out.println ("This time just took: " + times[x]);
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}

}

private void decryptNetworkSessionKey (byte [] encryptedNetworkSessionKey)

{

try

{

//("Create a cipher using that key to initialize it");

Cipher rsaCipher = Cipher.getInstance ("RSA/ECB/PKCS1Padding");

//("Read in the encrypted bytes of the session key");

ByteArrayInputStream bais = new ByteArrayInputStream

(encryptedNetworkSessionKey);

byte[] encryptedKeyBytesSize = new byte[1];

bais.read (encryptedKeyBytesSize, 0, 1);

// ("encryptedKeyBytesSize = " + encryptedKeyBytesSize);

//Assuming Network Session Key is of key size 256

byte[] encryptedKeyBytes = new byte[256];

bais.read (encryptedKeyBytes);

//System.out.println ("Decrypt the session key bytes.");

rsaCipher.init (Cipher.DECRYPT_MODE, clientRSAPrivateKey);

byte[] rijndaelKeyBytes = rsaCipher.doFinal (encryptedKeyBytes);

// (" Transform the key bytes into an actual key.");

rijndaelKey = new SecretKeySpec (rijndaelKeyBytes, "Rijndael");

System.out.println ("Network Session Key is: " +

rijndaelKey.toString () );

// Read in the Initialization Vector from the file.

rijndaeliv = new byte[16];

bais.read (rijndaeliv);
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rijndaelspec = new IvParameterSpec (rijndaeliv);

}

catch (Exception e)

{

System.out.println ("Exception in

decryptNetworkSessionKey: " + e.toString () );

}

}

private void communicate (ClientAuthenticationInterface servobj)

throws Exception

{

ByteArrayOutputStream output = new ByteArrayOutputStream ();

// Create the cipher for encrypting the file itself.

Cipher symmetricCipher = Cipher.getInstance

("Rijndael/CBC/PKCS5Padding");

symmetricCipher.init (Cipher.ENCRYPT_MODE, rijndaelKey, rijndaelspec);

CipherOutputStream cos = new CipherOutputStream

(output, symmetricCipher);

byte [] messageBytes;

String message;

BufferedReader in = new BufferedReader

(new InputStreamReader (System.in));

System.out.print ("Enter text to send: ");

message = new String (in.readLine ());

System.out.println ("The message I just read in was: " + message);

messageBytes = Base64.decode (message);

System.out.println ("The base64 decoded message is: " + messageBytes);

cos.write (messageBytes);

output.close ();

cos.close ();
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System.out.println

("The supposed encrypted message is : " + output.toByteArray ());

servobj.sendEncryptedMessage (output.toByteArray ());

//servobj.sendEncryptedMessage(messageBytes);

}

ClientAuthenticationInterface authInterface;

private String privateKeyFile;

private PrivateKey clientRSAPrivateKey;

private SecretKey rijndaelKey;

private byte[] rijndaeliv;

private IvParameterSpec rijndaelspec;

private DiffieHellmanExchange dH;

private SecretKey DHSessionKey;

}
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Appendix C

AuthenticationService.java

/*

* AuthenticationService.java

*

* Created on February 5, 2002, 6:34 PM

*/

package Authentication;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.io.*;

import java.net.*;

import java.math.*;

import java.util.*;

import java.util.Stack;

import java.security.*;

import java.security.spec.*;

import javax.crypto.*;

import javax.crypto.spec.*;

import javax.crypto.interfaces.*;

import Authentication.CADataStructure;

import Authentication.DiffieHellmanExchange;

import org.bouncycastle.util.encoders.Base64;

/**

* This class defines the authentication server methods.

* @author joshua datko

*/
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public class AuthenticationService extends UnicastRemoteObject

implements RMIAuthenticationInterface

{

/** Creates a new instance of AuthenticationService */

public AuthenticationService () throws RemoteException

{

clientCertificates = new Stack ();

try

{

generateNetworkSessionKey ();

loadPublicKeyRing ();

System.out.println

("Authentication Service version albatross-bruce");

dH = new DiffieHellmanExchange ();

}

catch (Exception e)

{

System.out.println (e.toString ());

}

}

/** Returns the server’s Diffie-Hellman public key to the client

* @return Diffie-Hellman Public Key

*/

public PublicKey getServerPublicKey () throws RemoteException

{

return dH.getServerPublicKey ();

}

/** Allows the client to upload his Diffie-Hellman public key

*/

public void sendClientPublicKey

(PublicKey clientPublicKey) throws RemoteException

{

try

{

dH.setClientPublicKey (clientPublicKey);

}
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catch(Exception e)

{

System.out.println (e.toString ());

}

}

/** Sends the initilization vector to the client

*/

public byte[] getIV () throws RemoteException

{

byte[] tempIV = dH.getDHIV ();

DHSessionKey = dH.getServerSessionKey ();

return dH.getDHIV ();

}

public void sendServerSignature

(byte[] encryptedClientSignature) throws RemoteException

{

System.out.println ("Server is running sendServerSignature");

try

{

//Begin a DH cipher stream,

//will encrypt the cert chain to this stream

Cipher cipher = Cipher.getInstance ("DESede/ECB/PKCS5Padding");

cipher.init (Cipher.DECRYPT_MODE, DHSessionKey);

byte [] clientSignature = cipher.doFinal

(encryptedClientSignature);

// Open up an output file for the output of the encryption

String fileOutput = "client_output";

FileOutputStream output =

(new FileOutputStream

(RECEIVED_CLIENT_CERTIFICATE_PATH + fileOutput));

//Strip the Time Stamp from the Certificate Chain

ByteArrayOutputStream baos = new ByteArrayOutputStream ();

baos.write

(certChainWithTimeStamp, 8, certChainWithTimeStamp.length - 8);

byte[] certChain = baos.toByteArray ();

baos.close ();

output.write (certChain);
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output.close ();

System.out.println ("Received Client’s Certificate Chain");

clientCertificates = Utility.unzipFile

(fileOutput, RECEIVED_CLIENT_CERTIFICATE_PATH);

extractPublicKey ();

clientPublicRSAKey = Utility.loadRSAPublicKeyFromFile

(KEY_RING_PATH + clientPublicKeyFile);

Signature signature = Signature.getInstance ("MD5WithRSA");

signature.initVerify (clientPublicRSAKey);

signature.update (certChainWithTimeStamp);

boolean authorized = false;

try

{

authorized = signature.verify (clientSignature);

}catch (SignatureException se)

{

System.out.println ("Invalid Padding ");

}

if (authorized)

{

System.out.println ("Client signature matches");

}

else

{

System.out.println

("Client signature is INVALID,

suspect Man-in-the-Middle ATTACK!");

System.out.println ("PROGRAM WILL NOW TERMINATE");

System.exit (0);

}

}

catch(Exception e)

{

System.out.println (e.toString ());



78

}

}

private void extractPublicKey () throws Exception

{

//Check to see if the public key already exists in the data base

//if (searchPublicKeyDatabase(clientCertificates) == true) {

System.out.println ("Beginning to extract Client’s Public Key");

boolean haveCertificate = false;

String tempCertificateName = new String ("null");

String clientEncryptedPublicKeyFileName = new String ("null");

Stack reverseClientCertificates = new Stack();

while (haveCertificate == false)

{

tempCertificateName = String.valueOf ( clientCertificates.pop () );

reverseClientCertificates.push(tempCertificateName);

if (clientEncryptedPublicKeyFileName.equals("null") )

clientEncryptedPublicKeyFileName = tempCertificateName;

System.out.println

("\tThe current value of tempCertificateName is :

" + tempCertificateName);

haveCertificate = searchKeyRing (tempCertificateName);

}

System.out.println ("***HERE I WILL CALL TRAVERSE CHAIN***");

traverseChain(reverseClientCertificates);

return;

}

private void traverseChain(Stack certificateChain) throws Exception{

String currentCertificate = String.valueOf ( certificateChain.pop());

//Test to see if stack is empty

if (certificateChain.isEmpty() == true)

return;

String nextCertificate = String.valueOf ( certificateChain.peek());
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System.out.println ("Current Certificate is");

System.out.println

("\t" + retrievePublicKeyFromKeyRing (currentCertificate));

PublicKey publicKey = Utility.loadRSAPublicKeyFromFile

( retrievePublicKeyFromKeyRing (currentCertificate));

System.out.println

("The Next Certificate in the chain is: " + nextCertificate);

// Create a cipher using that key to initialize it

Cipher rsaCipher = Cipher.getInstance ("RSA/ECB/PKCS1Padding");

// Read in the encrypted bytes of the session key

DataInputStream dis = new DataInputStream

(new FileInputStream (RECEIVED_CLIENT_CERTIFICATE_PATH +

nextCertificate));

//Reading in from dis

byte[] encryptedKeyBytes = new byte[dis.readInt ()];

//performing a readFully

dis.readFully (encryptedKeyBytes);

// Decrypt the session key bytes.

rsaCipher.init (Cipher.DECRYPT_MODE, publicKey);

byte[] rijndaelKeyBytes = rsaCipher.doFinal (encryptedKeyBytes);

// Transform the key bytes into an actual key.

SecretKey rijndaelKey = new SecretKeySpec

(rijndaelKeyBytes, "Rijndael");

// Read in the Initialization Vector from the file.

byte[] iv = new byte[16];

dis.read (iv);

IvParameterSpec spec = new IvParameterSpec (iv);

Cipher cipher = Cipher.getInstance ("Rijndael/CBC/PKCS5Padding");

cipher.init (Cipher.DECRYPT_MODE, rijndaelKey, spec);

CipherInputStream cis = new CipherInputStream (dis, cipher);

System.out.println ("Decrypting the file...");

clientPublicKeyFile = new String

(nextCertificate.substring(0,10) + ".pub");

FileOutputStream fos = new FileOutputStream

(KEY_RING_PATH + clientPublicKeyFile);
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//Read in the data Structure

byte[] dataStrucByte = new byte[100];

for (int x=0; x < 100; x++)

{

dataStrucByte[x] = (byte) cis.read ();

}

int theByte = 0;

while ((theByte = cis.read ()) != -1)

{

fos.write (theByte);

}

cis.close ();

fos.close ();

updatePublicKeyRing(clientPublicKeyFile.substring(3,5) );

System.out.println ("Done.");

System.out.println (dataStrucByte.length);

String dataStrucString = CADataStructure.parseByteArray

(dataStrucByte);

System.out.println (dataStrucString);

traverseChain(certificateChain);

}

public void sendServerCertChain (byte[] certChain) throws RemoteException

{

try

{

Cipher cipher = Cipher.getInstance ("DESede/ECB/PKCS5Padding");

cipher.init (Cipher.DECRYPT_MODE, DHSessionKey);

certChainWithTimeStamp = cipher.doFinal (certChain);

}

catch (Exception e)

{

System.out.println (e.toString ());

}

}
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public byte[] getNetworkSessionKey () throws RemoteException

{

try

{

System.out.println

("Obtaining public key: " + clientPublicKeyFile);

//create a new Byte Array output stream to hold

//the encrypted session key

/

ByteArrayOutputStream output = new ByteArrayOutputStream ();

// Create a cipher using that key to initialize it

Cipher rsaCipher = Cipher.getInstance ("RSA/ECB/PKCS1Padding");

rsaCipher.init (Cipher.ENCRYPT_MODE, clientPublicRSAKey);

// Encrypt the Rijndael key with the RSA cipher

// and write it to the beginning of the file.

byte[] encodedKeyBytes= rsaCipher.doFinal

(rijndaelKey.getEncoded ());

output.write (encodedKeyBytes.length);

output.write (encodedKeyBytes);

// Write the IV out to the file.

output.write (rijndaeliv);

IvParameterSpec spec = new IvParameterSpec (rijndaeliv);

encryptedSessionKey = output.toByteArray ();

}

catch(Exception e)

{

System.out.println (e.toString ());

}

return encryptedSessionKey;



82

}

private void generateNetworkSessionKey ()

{

try

{

// Now create a new 256 bit Rijndael key for

//the encrypting Network Session key

KeyGenerator rijndaelKeyGenerator =

KeyGenerator.getInstance ("Rijndael");

rijndaelKeyGenerator.init (256);

System.out.println ("Server is generating network session key...");

rijndaelKey = rijndaelKeyGenerator.generateKey ();

System.out.println ("Done generating key.");

System.out.println

("Network Session Key is : " + rijndaelKey.toString () );

// Now we need an Initialization Vector for

// the symmetric cipher in CBC mode

SecureRandom random = new SecureRandom ();

rijndaeliv = new byte[16];

random.nextBytes (rijndaeliv);

}

catch (Exception e)

{

System.out.println (e.toString ());

}

}

public void sendEncryptedMessage (byte[] message) throws RemoteException

{

try

{

System.out.println ("The message I received was: " + message);

ByteArrayInputStream bais = new ByteArrayInputStream (message);

IvParameterSpec spec = new IvParameterSpec (rijndaeliv);

Cipher cipher = Cipher.getInstance ("Rijndael/CBC/PKCS5Padding");

cipher.init (Cipher.DECRYPT_MODE, rijndaelKey, spec);

CipherInputStream cis = new CipherInputStream (bais, cipher);

ByteArrayOutputStream baos = new ByteArrayOutputStream ();

int theByte = 0;
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while ((theByte = cis.read ()) != -1)

{

baos.write (theByte);

}

System.out.println

("The message before I base64 it is: " + baos.toByteArray ());

byte[] bytesToDecode = baos.toByteArray ();

bais.close ();

cis.close ();

baos.close ();

byte [] tempSentMessage = Base64.encode (message);

byte [] sentMessage = Base64.encode (bytesToDecode);

String tempString = new String (sentMessage);

//String tempString = new String(tempSentMessage);

tempString.replace (’A’, ’ ’);

System.out.println ("The secret message is: " + tempString);

}

catch (Exception e)

{

System.out.println (e.toString ());

}

}

private boolean searchKeyRing (Object certificateName)

{

String CANumber = String.valueOf (certificateName);

CANumber = CANumber.substring (3,5);

return publicKeyRing.containsKey (CANumber);

}

private void loadPublicKeyRing () throws Exception

{

System.out.println ("Loading Server’s Public Key Ring");

publicKeyRing = new Hashtable ();

BufferedReader in = new BufferedReader

(new FileReader (KEY_RING_PATH + "list"));
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String tempString;

tempString = in.readLine ();

String CANumber;

System.out.println ("Public Key Ring Contains the following servers:");

while (!tempString.equals ("EOF"))

{

CANumber = tempString.substring (3,5);

System.out.println ("CANumber : " + CANumber);

updatePublicKeyRing(CANumber);

tempString = in.readLine ();

}

in.close ();

System.out.println ("Finished Loading Key Ring");

}

private void updatePublicKeyRing (String CANumber) throws Exception

{

publicKeyRing.put (CANumber, new String

(KEY_RING_PATH + "CA_" + CANumber + "_2048.pub"));

}

private String retrievePublicKeyFromKeyRing (String certificateName)

{

System.out.println

("I am trying to retrieve the following certificate Name:

" + certificateName);

String CANumber = certificateName.substring (3,5);

return String.valueOf ( publicKeyRing.get (CANumber) );

}

private byte[] certChainWithTimeStamp;

private SecretKey sessionDHKey;

private String clientPublicKeyFile;

private PublicKey clientPublicRSAKey;

private Key rijndaelKey;

private byte[] rijndaeliv;

private byte[] encryptedSessionKey;
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private Stack clientCertificates;

private DiffieHellmanExchange dH;

private SecretKey DHSessionKey;

private Hashtable publicKeyRing;

private final String KEY_RING_PATH =

"/home/joshua/jiniscript/serverPublicKeyRing/";

private final String RECEIVED_CLIENT_CERTIFICATE_PATH =

"/home/joshua/jiniscript/serverReceivedChain/";

}
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Appendix D

User’s Manual

The following is the user’s manual to simulate an ad hoc join with our software. These
instructions cover installation and basic use.

1. Obtain and install the following software packages:

- Java 2 SDK v1.4, http://www.java.sun.com.

- Jini Networking Technology v1.2, http://www.jini.org.

- Legion of the Bouncy Castle Java Cryptography Extension,
http://www.legionbouncycastle.org.

2. Assuming that you have obtained a copy of the source code for the project and have
successfully performed a tar -xvf, there are only two directories you will need to run
the simulations: Authentication and jiniscript. Authentication contains all the
Java source files for the simulation and jiniscript contains all the scripts necessary
to run the simulation.

3. Running the simulation is a function of running the scripts in the jiniscript directory
in the proper sequence. The first script that needs to run is startRmid. This will
initiate Java’s RMI daemon to allow remote code invocation.

4. The next batch of scripts should be run in the following order: startHTTPReggie,
startHTTPService, startHTTPReggie, startReggie. These scripts run the necessary
HTTP servers required for the Jini implementation.

5. Now, run the server (runServer) and wait for the output to the screen indicating that
the server is awaiting a client.

6. Finally run runClient to simulate a joining entity. The output, including time to
authenticated is displayed in the same terminal window.

7. Make sure to stop the server before joining another client, unless you want the server
to re-use the key generation steps.




